Basic structure and cell culture condition of a bioartificial renal tubule on chip towards a cell-based separation microdevice.

نویسندگان

  • Xiaofang Gao
  • Yo Tanaka
  • Yasuhiko Sugii
  • Kazuma Mawatari
  • Takehiko Kitamori
چکیده

Various separation processes have been integrated in microfluidics, such as capillary electrophoresis and chromatography, on a microchip. However, it is extremely difficult to separate a complicated biological system by conventional methods. Here, we report on a feasible structure and the culture condition of human renal proximal tubule epithelial cells (RPTECs), with the aim to construct a bioartificial renal tubule on a chip. Glass microchips and a polycarbonate membrane were sealed with no leakage after a surface modification. Furthermore, matrigel was selected as an optimized extracellular matrix (ECM) for cell-proliferation on the membrane. After culturing for 5 days, RPTECs reached confluent in the chip-membrane structure, which was confirmed by nuclei staining. So far, we have constructed the basic structure and cell proliferation circumstance for the future demonstration of the RPTECs separating function. This separation microdevice has promising potential to be applied as both a unit of a circulation cell culture system and a research platform of cell biology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: A Bioartificial Renal Tubule Device Embedding Human Renal Stem/Progenitor Cells

We present a bio-inspired renal microdevice that resembles the in vivo structure of a kidney proximal tubule. For the first time, a population of tubular adult renal stem/progenitor cells (ARPCs) was embedded into a microsystem to create a bioengineered renal tubule. These cells have both multipotent differentiation abilities and an extraordinary capacity for injured renal cell regeneration. Th...

متن کامل

Development of bioartificial renal tubule devices with lifespan-extended human renal proximal tubular epithelial cells.

BACKGROUND The bioartificial renal tubule device is a cell therapy system for renal failure. The major obstacle in the development of the bioartificial renal tubule device is the obtainment of a large number of viable renal tubule cells to seed on the inner surface of hollow fibers. Although our previous studies had used a transformed cell line, they may be dangerous for clinical uses. Therefor...

متن کامل

Current status of bioartificial kidney

Current dialysis systems are not perfect considering the low efficacy and cumbersome process of actual practice. To overcome these shortcomings, bioartificial kidneys using renal tubule cells and wearable dialysis are promising ESRD treatments available in the near future. Toward clinical application, however, there are so many obstacles for commercial use of them. In this review, current statu...

متن کامل

Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.

Kidney toxicity is one of the most frequent adverse events reported during drug development. The lack of accurate predictive cell culture models and the unreliability of animal studies have created a need for better approaches to recapitulate kidney function in vitro. Here, we describe a microfluidic device lined by living human kidney epithelial cells exposed to fluidic flow that mimics key fu...

متن کامل

Three Dimensional Co-culture of Neuron and Astrocyte in a Micro-fluidic Deivce

In this paper, we describe a microfluidic platform that enables three dimensional cell culture within defined microenvironments towards a study of axon-glia interaction. The microdevice can offer both 3D axon isolation from cell body and 3D spatial cell separation between neuron and astrocyte. It consists of large fluidic channels for media supply and small channels for collagen filling as a th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 27 9  شماره 

صفحات  -

تاریخ انتشار 2011